Squashed toric sigma models and mock modular forms

نویسندگان

  • Rajesh Kumar Gupta
  • Sameer Murthy
چکیده

We study a class of two-dimensional N = (2, 2) sigma models called squashed toric sigma models, using their Gauged Linear Sigma Models (GLSM) description. These models are obtained by gauging the global U(1) symmetries of toric GLSMs and introducing a set of corresponding compensator superfields. The geometry of the resulting vacuum manifold is a deformation of the corresponding toric manifold in which the torus fibration maintains a constant size in the interior of the manifold, thus producing a neck-like region. We compute the elliptic genus of these models, using localization, in the case when the unsquashed vacuum manifolds obey the Calabi-Yau condition. The elliptic genera have a non-holomorphic dependence on the modular parameter τ coming from the continuum produced by the neck. In the simplest case corresponding to squashed C/Z2 the elliptic genus is a mixed mock Jacobi form which coincides with the elliptic genus of the N = (2, 2) SL(2,R)/U(1) cigar coset. ar X iv :1 70 5. 00 64 9v 1 [ he pth ] 1 M ay 2 01 7

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIXED MOCK MODULAR q-SERIES

Mixed mock modular forms are functions which lie in the tensor space of mock modular forms and modular forms. As q-hypergeometric series, mixed mock modular forms appear to be much more common than mock theta functions. In this survey, we discuss some of the ways such series arise.

متن کامل

MOCK MODULAR FORMS AS p-ADIC MODULAR FORMS

In this paper, we consider the question of correcting mock modular forms in order to obtain p-adic modular forms. In certain cases we show that a mock modular form M is a p-adic modular form. Furthermore, we prove that otherwise the unique correction of M is intimately related to the shadow of M.

متن کامل

Eichler-shimura Theory for Mock Modular Forms

We use mock modular forms to compute generating functions for the critical values of modular L-functions, and we answer a generalized form of a question of Kohnen and Zagier by deriving the “extra relation” that is satisfied by even periods of weakly holomorphic cusp forms. To obtain these results we derive an Eichler-Shimura theory for weakly holomorphic modular forms and mock modular forms. T...

متن کامل

Mock modular forms and geometric theta functions for indefinite quadratic forms

Mock modular forms are central objects in the recent discoveries of new instances of Moonshine. In this paper, we discuss the construction of mixed mock modular forms via integrals of theta series associated to indefinite quadratic forms. In particular, in this geometric setting, we realize Zwegers’ mock theta functions of type ( p, 1) as line integrals in hyperbolic p-space.

متن کامل

Secord-order Cusp Forms and Mixed Mock Modular Forms

In this paper, we consider the space of second order cusp forms. We determine that this space is precisely the same as a certain subspace of mixed mock modular forms. Based upon Poincaré series of Diamantis and O’Sullivan [21] which span the space of second order cusp forms, we construct Poincaré series which span a natural (more general) subspace of mixed mock modular forms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017